If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15z^2+15z-20=0
a = 15; b = 15; c = -20;
Δ = b2-4ac
Δ = 152-4·15·(-20)
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{57}}{2*15}=\frac{-15-5\sqrt{57}}{30} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{57}}{2*15}=\frac{-15+5\sqrt{57}}{30} $
| 2x+49=-5x | | 3x-1/2=x-2/5 | | 5x+6=-31 | | x-2/6+6=4x/5 | | 2d+4=10+2,5d | | -5-72x=75 | | 41000=x+0.03x | | 2(2m+3)-7m=9 | | -5-72x=7 | | -12x^2+240x=0 | | 2h^2=262 | | Y=-0.12x^2+2.4x | | 3x^2+9x-180=0 | | 5x+11=84 | | 4n+18=54 | | (x^2-1)(0.6x+1)=0.6x^2+x | | 7/3x+1/3x=4x+27/3+5/3x | | 4w^2+36w-63=0 | | 3x+6=x^2+6x+8 | | 4y-2+y+46=6y+50-3y | | 4x+6/3=5x-3 | | 4x/3+2=5x/2-3/2 | | 3x-12+7=5x+4x-17 | | 8+9n-7=9n+43-6n | | x²-8x=9 | | d+26/7=7 | | 8x+7(2-3x)=-6(2x+50 | | m/4+-18=-10 | | (1/2)x+(1/5)=13 | | 23-2q=11 | | r/6+43=51 | | x+5=5x-4 |